Some Relationships between the Generalized Apostol- Bernoulli and Apostol-Euler Polynomials
نویسنده
چکیده
Bernoulli polynomials play an important role in various expansions and approximation formulas which are useful both in analytic theory of numbers and the classical and the numerical analysis. These polynomials can be defined by various methods depending on the applications. There are six approaches to the theory of Bernoulli polynomials. We prefer here the definition by generating functions given by Euler [4]. The classical Bernoulli polynomials and the classical Euler polynomials are defined respectively as
منابع مشابه
Some results on the Apostol-Bernoulli and Apostol-Euler polynomials
The main object of this paper is to investigate the Apostol-Bernoulli polynomials and the Apostol-Euler polynomials. We first establish two relationships between the generalized Apostol-Bernoulli and Apostol-Euler polynomials. It can be found that many results obtained before are special cases of these two relationships. Moreover, we have a study on the sums of products of the Apostol-Bernoulli...
متن کاملAn extension of generalized Apostol-Euler polynomials
Recently, Tremblay, Gaboury and Fugère introduced a class of the generalized Bernoulli polynomials (see Tremblay in Appl. Math. Let. 24:1888-1893, 2011). In this paper, we introduce and investigate an extension of the generalized Apostol-Euler polynomials. We state some properties for these polynomials and obtain some relationships between the polynomials and Apostol-Bernoulli polynomials, Stir...
متن کاملOn the Multiple Sums of Bernoulli, Euler and Genocchi Polynomials
We introduce and investigate the Apostol-Bernoulli, Apostol-Euler and Apostol-Genocchi polynomials by means of a suitable theirs generating polynomials. We establish several interesting properties of these polynomials. Also, we gave some propositions two theorems and one corollary.
متن کاملPadé Approximation and Apostol-Bernoulli and -Euler Polynomials
Using the Padé approximation of the exponential function, we obtain recurrence relations between Apostol-Bernoulli and between Apostol-Euler polynomials. As applications, we derive some new lacunary recurrence relations for Bernoulli and Euler polynomials with gap of length 4 and lacunary relations for Bernoulli and Euler numbers with gap of length 6.
متن کاملFourier expansions and integral representations for the Apostol-Bernoulli and Apostol-Euler polynomials
We investigate Fourier expansions for the Apostol-Bernoulli and Apostol-Euler polynomials using the Lipschitz summation formula and obtain their integral representations. We give some explicit formulas at rational arguments for these polynomials in terms of the Hurwitz zeta function. We also derive the integral representations for the classical Bernoulli and Euler polynomials and related known ...
متن کامل